

Bottlenecks in transitioning to Daily water supply -The case of Gandhidham

> Guide: Upasana Yadav Co-guide: Omkar Kane

Study by Vaagdaa Vijayshankar| PUI23416

DRP SPRING SEMESTER 2025 MASTER OF INFRASTRUCTURE PLANNING FACULTY OF PLANNING CEPT UNIVERSITY

CWAS CENTER FOR WATER AND SANITATION CEPT

The Need for Daily Water Supply in Indian Cities

Intermittent supplies

Poor infrastructure

Growing Urban Population Strains Water Resources

India's urban population is expected to reach **600 million by 2030**

50% of urban households lack piped water connections

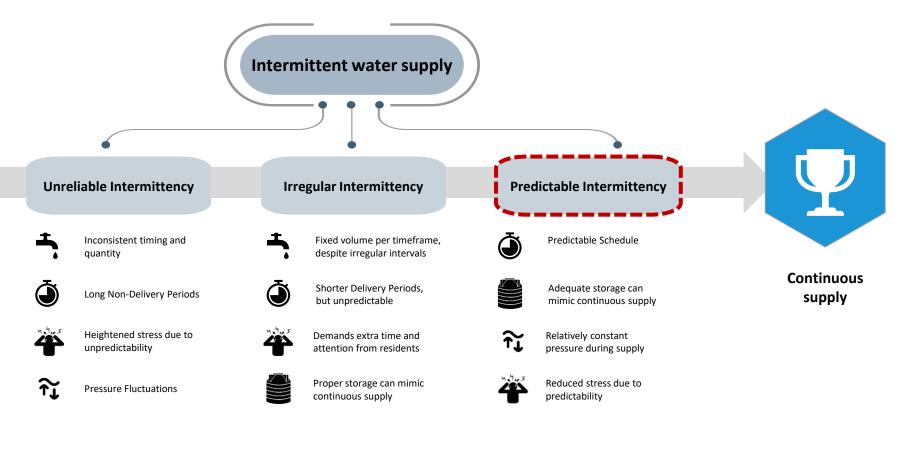
Water Scarcity and Inequitable Distribution

21 major cities, including Delhi and Bengaluru, will run out of groundwater by 2030

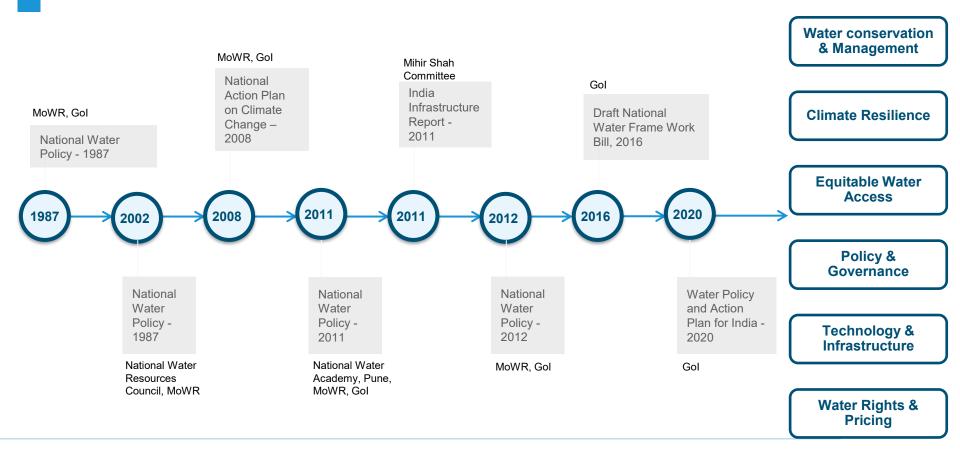
34% of urban water supply is lost due to leaks and theft

Health and Economic Impacts

37.7 million Indians are affected by waterborne diseases annually

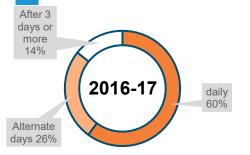

73% of urban households rely on expensive private water tankers

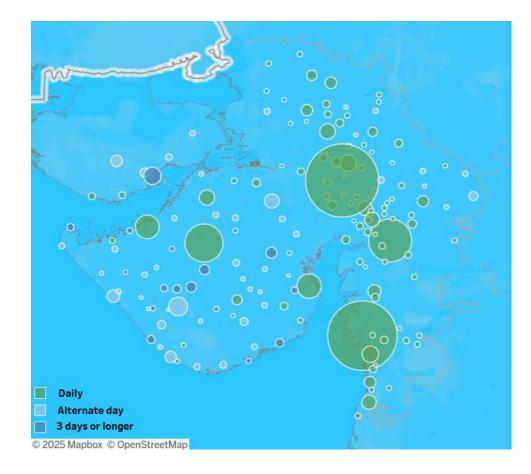
Climate Change Exacerbates Shortages

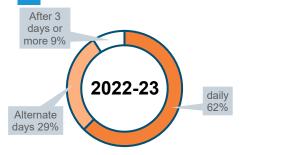

Erratic monsoons and depleting groundwater worsen urban water stress.

By 2050, water demand will exceed supply by 50% .

Why focus on daily supply




Water related policies in India and their key features


Source : http://timesofindia.indiatimes.com/articleshow/108120955.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst Ministry of Urban Development, Government of India. (2018). National Urban Sanitation Policy.

Existing Situation in Gujarat

Existing Situation in Gujarat

Bagasra Baravala Bhavnagar Gariyadhar Halol Lathi Vadali

Slight increase in cities supplying water on daily and alternate basis

- Narmada connectivity
- Increasing water storage capacity deepening lakes
- Increasing water resources
- Desalination

82% Surface water dependance

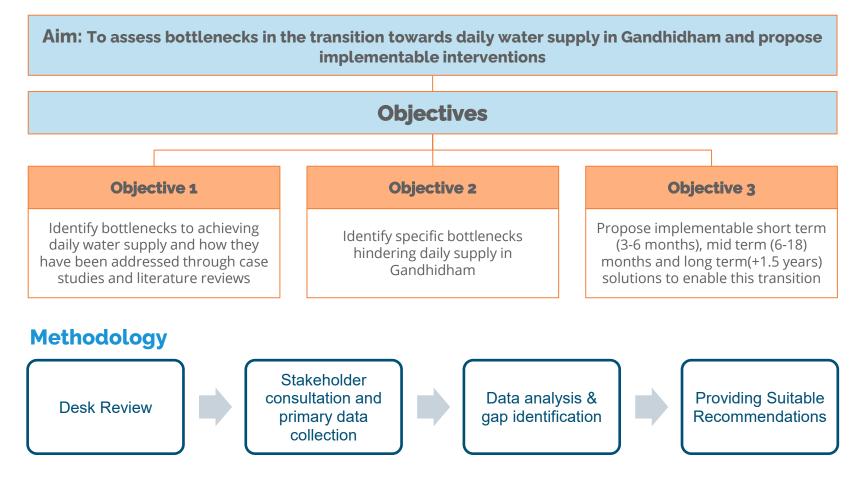
18% Ground water

dependance

2.1 hrs Average Daily Supply

Tier 3 cities

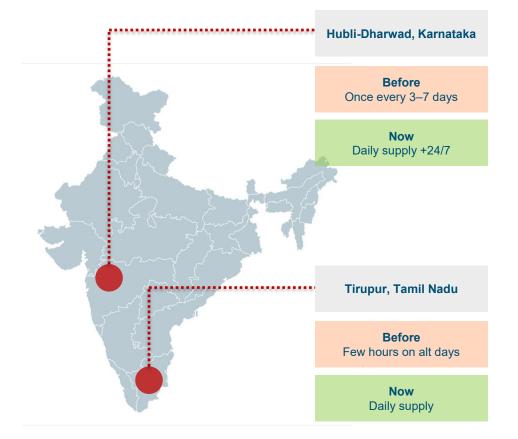
_	Bagasra	Baravala (Botad)	Gariyadhar	Lathi	Vadali
(ip)	37,900	23,500	39,152	24,998	26961
Issues	High groundwater nitrate/salinity	Erratic local sources	Unreliable sources	Limited infrastructure	Groundwater- dependent
Key Interventions	 Narmada pipeline to replace groundwater 	 Narmada grid connectivity Increase network coverage 	 Narmada stable supply Increased coverage Increased storage 	 Narmada stable supply Increased coverage Increased storage 	 Narmada reduced GW dependance Increased network coverage and storage
Common measures Enhanced Narmada connectivity Enhanced Narmada connectivity Increased storage expansion Coverage					


Source : PAS Data, https://saujaldharatrust.com/checkdam-list/, WATER AND SANITATION SERVICES IN URBAN GUJARAT, UMC 2012, https://amrut.mohua.gov.in/approvedProjects/list/c3cwOVIFOG1BckF5cE9mQVVFbWhSdz09/aTJrakVqeTY5amZkazJuNWhJczNYdz09

Tier 1 cities

	Bhavnagar	Halol	
(ip)	7,97,328	1,03,210	
Issues	High groundwater nitrate/salinity	Industrial town, rising urban/industrial demand	
Key Interventions	 100 MLD Increased Narmada supply with Shetrunji Dam Expansion of piped network Increased storage capacity Governance (2016-2025): Villagers engagement in O&M of water reservoirs 	 Narmada grid connectivity Increase network coverage, 100% tap connected Groundwater resource management (aquifer recharge) 	
Common measures	Enhanced Narmada connectivity	Increased storage capacity	

Source : BMC, https://www.vrtibhavnagar.org/watersector.html, Bhavnagar City Water Supply Scheme, https://jaljeevanmission.gov.in/media/halol-and-jambughoda-talukas-panchmahal-district-become-100-tap-water-connected, District Irrigation Plan (2016-2020):PANCHMAHAL, GUJARAT, GoG


Research Overview

Identifying Bottlenecks

Case studies and Literature reviews

Case studies

Source : Environmental and Social Assessment (ESA) for continuous water supply in Hubballi-Dharwad, World Bank https://timesofindia.indiatimes.com/city/hubballi/hubballi-dharwad-247-water-supply-project-delays-spark-resident-concerns/articleshow/115498207.cms, https://timesofindia.indiatimes.com/city/hubballi/hubballi-dharwad-247-water-supply-project-delays-spark-resident-concerns/articleshow/115498207.cms, https://timesofindia.indiatimes.com/city/hubballi-dharwad-project-2940052, <a hr

11

Hubli-Dharwad, Karnataka

Before Once every 3–7 days	46 wards 3-7 days	25 wards Daily supply	11 wards 24x7 supply
Now Daily supply +24/7	2021 Initial completion	2025 Revised completion	40% Progress

Key Issues:

- High non-revenue water (NRW) (~40%).
- Poor pressure management leading to leaks and contamination.
- Heavy reliance on groundwater due to unreliable piped supply.

Hubli-Dharwad, Karnataka - Interventions

Interventions	Why?	How?	Impact
Zonal Segregation (DMA Approach)	The city's water network was interconnected, making it hard to isolate leaks or theft.	Divided into 19 isolated zones with boundary valves and flow meters.	Leaks in one zone didn't disrupt the entire city. Allowed targeted repairs (NRW dropped from 40% to 15% in pilot zones).
Pressure Management (PRVs)	High pressure caused frequent pipe bursts.	Installed Pressure Reducing Valves (PRVs) to maintain optimal pressure (3–4 bar).	Reduced pipe breaks by 60%. Saved energy (lower pumping needed).
Household Metering	Unmetered connections led to overuse and theft.	Installed mechanical meters (later smart meters for industries).	Billing efficiency improved from 50% to 85%. Consumers reduced wastage (volumetric pricing).
Leak Detection (Acoustic Sensors)	Underground leaks were hard to detect.	Used ground microphones to listen for leaks.	500+ leaks fixed in the first year.
Water User Associations (WUAs)	Lack of community trust in utility.	Local committees monitored supply and reported issues.	Faster grievance resolution. Reduced illegal connections.

Project could not be scaled up due to Financial constraints

Source : Environmental and Social Assessment (ESA) for continuous water supply in Hubballi-Dharwad, World Bank <u>https://timesofindia.indiatimes.com/city/hubballi/hubballi/hubballi/hubballi-dharwad-247-water-supply-project-delays-</u>

Lessons

High Operational costs in pilot zones

 The 24x7 continuous supply model required maintaining constant pressure, 24/7 pumping, and frequent leak repairs.

Energy costs surged by ~40% due to continuous operation.

Lessons

Consumers need sufficient time to

- (i) gain confidence about the reliability of supply,
- (ii) get an idea of their monthly water charges
- (iii) control consumption and undertake any repairs in their internal plumbing to reduce leakage.

Low Willingness-to-Pay

Households questioned why they should pay more when groundwater was still available as a backup. Only 65% of bills were paid on time in pilot zones. High number of complaints regarding bills

Volumetric tariffs had to be reduced to curb agitation

Low cost recovery; multiple contractors

leading to project delays

Tirupur, Tamil Nadu

Before Alternate days, few hours	Heavy reliance on water tankers	Heavy pollution by textile industry	Fast depleting groundwater
Proposed Daily supply	Slums Still face gaps (2022)	NRW Dropped in upgraded zones	Leaks/theft Persist in older areas

Key Issues:

• High contamination due to textile industry

16

- Heavy reliance on groundwater
- Fast depleting groundwater levels
- High NRW levels

Funding Shortfalls

- PPP Model Limitations: Private sector (Suez) focused on high-revenue zones (industries), leaving residential areas underfunded.
- Unequal Service Delivery
- Delayed Expansions
- Dependence on Cross-Subsidies

Funding Shortfalls

Infrastructure Gaps

PPP Model Limitations: Private sector (Suez) focused on high-revenue zones (industries), leaving residential areas underfunded.

Incomplete Pipeline Upgrades (38% completion in 2023): Older networks in slums/peripheral areas were not fully replaced.

Unequal Service Delivery

- Delayed Expansions
- Dependence on Cross-Subsidies

Persistent Leakage

- Pressure Inequity
- Tanker Dependence

Funding Shortfalls

Infrastructure Gaps

PPP Model Limitations: Private sector (Suez) focused on high-revenue zones (industries), leaving residential areas underfunded.

Incomplete Pipeline Upgrades: Older networks in slums/peripheral areas were not fully replaced. Political & Administrative Challenges Industry vs. Household Priorities: Textile lobby influenced water allocation, delaying equitable distribution.

Unequal Service Delivery

- Delayed Expansions
- Dependence on Cross-Subsidies

- Persistent Leakage
- Pressure Inequity
- Tanker Dependence

- Lobbying Bias
- Slow Reforms
- Accountability Gaps

Funding Shortfalls

Infrastructure Gaps

PPP Model Limitations: Private sector (Suez) focused on high-revenue zones (industries), leaving residential areas underfunded. Incomplete Pipeline Upgrades: Older networks in slums/peripheral areas were not fully replaced. Political & Administrative Challenges Industry vs. Household Priorities: Textile lobby influenced water allocation, delaying equitable distribution.

Groundwater Depletion

Despite reduced dependence, falling water tables (~2m/year decline post-2015) exacerbated dry-season shortages.

- Unequal Service Delivery
- Delayed Expansions
- Dependence on Cross-Subsidies

- Persistent Leakage
- Pressure Inequity
- Tanker Dependence

- Lobbying Bias
- Slow Reforms
- Accountability Gaps

- Source Instability
- Long-Term Risks
- Higher Costs

Source : Drivers for Intermittent Water Supply in India: Critical Review and Perspectives, IITB, Intermittent water supply systems: causal factors, problems and solution options, 2018, Intermittent Domestic Water Supply:22 ACritical Review and Analysis of Causal-Consequential Pathways, 2016

Design and Analysis

Centralized Planning Issues

- Ideal ESR (Elevated Storage Reservoir) location fails due to **land constraints**, leading to hydraulic failures.
- Population forecast
- **uncertainties** result in faulty demand projections.

Gap Between Design Standards & Actual Operation

- **Design norms** (e.g., pipe diameter, peak factor) conflict with **intermittent supply (IWS)** realities.
- Per capita demand norms outdated lifestyle changes (e.g., rural tech penetration) increase water demand.

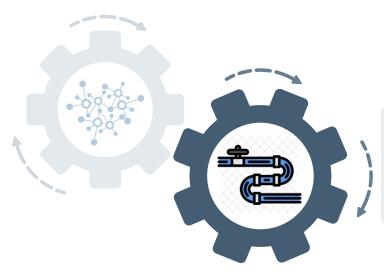
Flaws in Network Analysis Methods

- •Unaccounted pressure variations.
- •Unaccounted service connection pipes.
- Ignored **household storage** (critical in IWS).

Operation and Maintenance

Failed DMA Implementation

- Maintenance becomes
 challenging
- Conducting water audit is


tedious

Operation and Maintenance

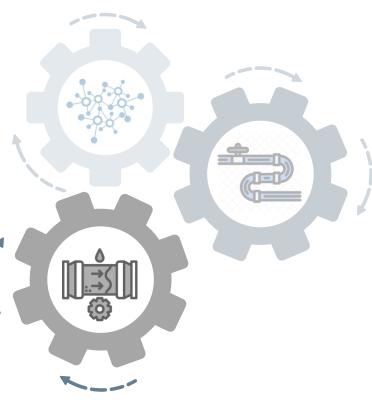
Failed DMA Implementation

- DMAs not functional in practice → difficult maintenance & water audits.
- Transmission networks often bypass ESRs, connecting directly to distribution lines.

Operational inefficiencies

- Partial flow conditions leave ESRs incompletely filled.
- Frequent pipeline refilling
 increases losses

Source : Drivers for Intermittent Water Supply in India: Critical Review and Perspectives, IITB, Intermittent water supply systems: causal factors, problems and solution options, 2018, Intermittent Domestic Water Supply: 25 ACritical Review and Analysis of Causal-Consequential Pathways, 2016


Operation and Maintenance

Failed DMA Implementation

- DMAs not functional in practice → difficult maintenance & water audits.
- Transmission networks often bypass ESRs, connecting directly to distribution lines.

Aging Infrastructure & Poor Data Management

- The lack of a proper database regarding the pipe age and rehabilitation activity
- GIS underutilized for asset tracking.

Operational inefficiencies

- Partial flow conditions leave ESRs incompletely filled.
- Frequent pipeline refilling wastes water and increases losses.
- HGL drops below Low Supply Level (LSL) due to uncontrolled withdrawals
 → reduced network pressure.

Consumer Satisfaction

Service Quality Depends On:

Infrastructure Condition (plagued by planning/design flaws)

System Reliability (disrupted by):

- $\bullet \text{Power cuts} \to \text{pump failures}$
- •Unplanned urban growth \rightarrow unmet demand
- Droughts/surges (e.g., festivals) \rightarrow shortages

Hidden Costs to Consumers

Coping Strategies (due to unreliable supply):

- •Storage tanks/pumps (for low pressure)
- •Water filters (for poor quality)
- •Tankers/bottled water (for shortages)

Coping Costs:

- •Extra money (15–25% of income in some cases)
- •Lost wages (waiting for supply hours)

Source : Drivers for Intermittent Water Supply in India: Critical Review and Perspectives, IITB, Intermittent water supply systems: causal factors, problems and solution options, 2018, Intermittent Domestic Water Supply: 27 ACritical Review and Analysis of Causal-Consequential Pathways, 2016

Revenue

1. Tariff & Cost Reality

- Public Expectation: Water should be free/cheap (basic right perception)
- Actual Cost:
 - Mumbai example:
 - Treatment cost: ₹20/1,000L
 - Consumer charge: ₹5/1,000L (25% of cost)

2. Flawed Billing Systems

- Tariff Types:
 - Flat rates (unmetered)
 - · Block tariffs (metered, but meters fail in IWS)
- Meter Issues:
 - Mechanical meters \rightarrow inaccurate readings
 - Electronic meters \rightarrow high O&M costs

Institutional capacity

Skill Gaps:

- •Lack of technical/managerial expertise
- •Outsourcing of planning/design leading to poor ownership
- Training Programs focus on generic
- topics, not actual solutions

Institutional Weaknesses

Institutional capacity

Institutional capacity

Skill Gaps:

- Lack of technical/managerial expertise
- Outsourcing of planning/design leading to poor ownership
- Training Programs focus on generic topics, not actual solutions

Institutional Weaknesses Financial & **Operational** Failures

Institutional capacity

Tariffs Below operating costs leading to revenue shortfalls Database Gaps: Limited GIS use for revenue/asset tracking Coordination Issues: Civil servants vs. engineers \rightarrow Poor decision-making

Institutional capacity

Skill Gaps:

- •Lack of technical/managerial expertise
- Outsourcing of planning/design leading to poor ownership
- **Training Programs** focus on generic topics, not actual solutions

Tariffs Below operating costs
leading to revenue shortfalls
Database Gaps: Limited GIS use for revenue/asset tracking
Coordination Issues: Civil servants vs. engineers → Poor decision-making

Consultants may push
 unsuitable, high-cost solutions

Amendment)

Varied Models:

- Lack of technical/managerial expertise
- Outsourcing of planning/design leading to poor ownership
- Training Programs focus on generic topics, not actual solutions

Institutional capacity

Institutional Weaknesses

Financial & Failures

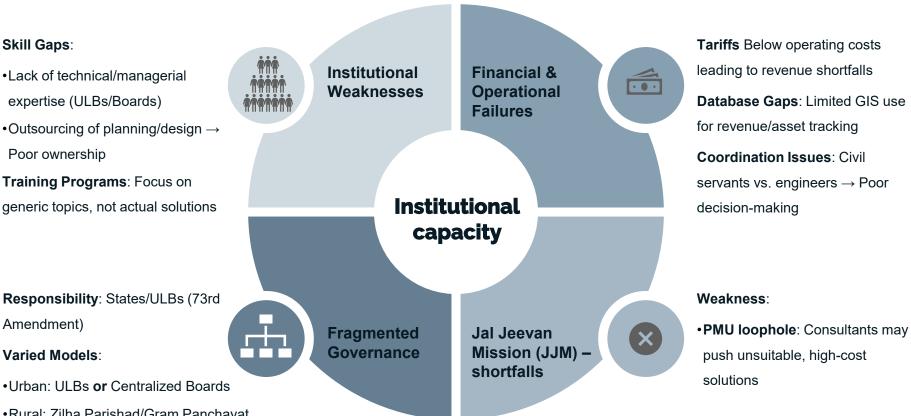
Institutional capacity

Jal Jeevan Mission (JJM) shortfalls

Tariffs Below operating costs leading to revenue shortfalls Database Gaps: Limited GIS use for revenue/asset tracking Coordination Issues: Civil servants vs. engineers \rightarrow Poor decision-making

Weakness[.]

• PMU loophole: Consultants may push unsuitable, high-cost solutions


•Rural: Zilha Parishad/Gram Panchayat

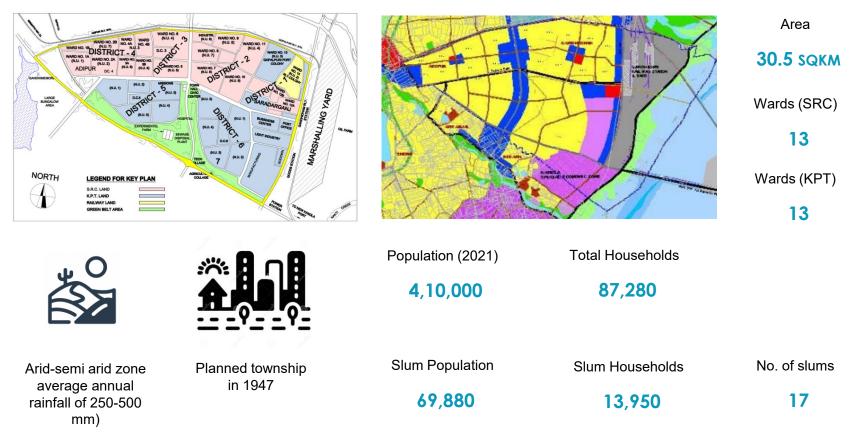
•Urban: ULBs or Centralized Boards

Source : Drivers for Intermittent Water Supply in India: Critical Review and Perspectives, IITB, Intermittent water supply systems: causal factors, problems and solution options, 2018, Intermittent Domestic Water Supply: 32 ACritical Review and Analysis of Causal-Consequential Pathways, 2016

push unsuitable, high-cost shortfalls solutions •Urban: ULBs or Centralized Boards •Rural: Zilha Parishad/Gram Panchayat Source : Drivers for Intermittent Water Supply in India: Critical Review and Perspectives, IITB, Intermittent water supply systems: causal factors, problems and solution options, 2018, Intermittent Domestic Water Supply: ACritical Review and Analysis of Causal-Consequential Pathways, 2016

Institutional capacity

Gandhidham Bottlenecks


Primary and Secondary data

Contents

- 1. City Overview
- 2. Water supply value chain overview
- 3. Bottleneck assessment
- Design and Analysis
- Operation and Maintenance
- Consumer satisfaction
- Revenue Collection and Financial Health
- Institutional Capacity

City Profile

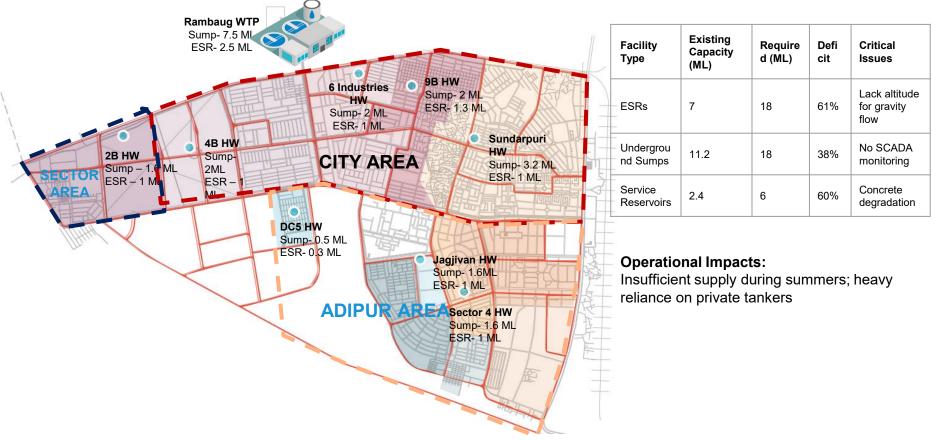


Overview of Water Supply in Gandhidham

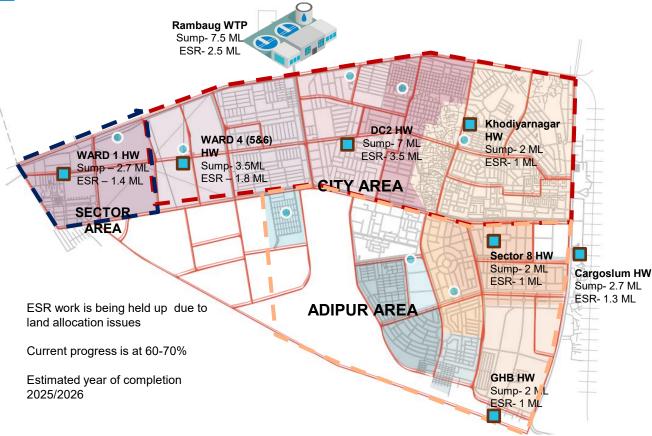
Design and Analysis

Source availability- Heavy reliance on distant sources

Source	Capacity (MLD)	% of Supply	Reliability Issues
Narmada Canal	40	75%	Seasonal fluctuations (30% summer drop)
GWSSB Borewells	12	25%	High salinity
Local RWH	unknown	unknown	No systematic harvesting


There is a need to augment own sources. Opportunity for rainwater harvesting

Treatment capacity

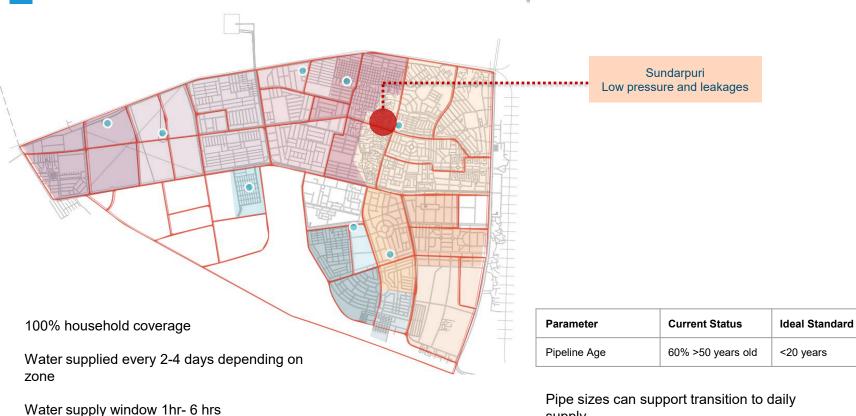

If existing plant is not repaired and brought into use, effective treatment capacity available is **27 MLD**

Storage infrastructure gaps

The current infrastructure caters to approx. 50% of the city's needs

Proposed storage

The augmented system under Nal se Jal would cater to approx. 90% of the city's current needs



compound in Sundarpuri ward

Existing ESRs are expected to go out of use in 5-10 years

Unclear if new ESRs will supplement or replace old ESRs

Network Design Deficiencies

supply

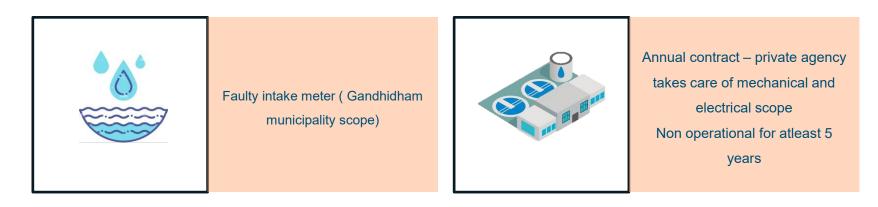
- 10-

Stormwater Drainage network

Gandhidham is a planned city. This includes stormwater drains across the city

These are littered with solid waste.

Slum areas release greywater into them in some cases


Better solid waste management is required Awareness is required about the benefits and need for daily water supply

Recommendations to Strengthen Design and Analysis

Bottleneck	Solution	Implementation Steps	Expected Outcome
Single-source dependency	Develop multi-source water security plan	 Augment local sources (revive defunct borewells) Build 5 MLD RWH infrastructure Pilot wastewater reuse (1 MLD for non-potable use) 	Reduce Narmada dependency
Outdated network	Hydraulic modeling & DMA redesign	 Zone city into DMAs with flow meters Replace aging pipes (Priority: Ward 5,7) Optimize pump schedules using EPANET software 	Reduce NRW
Storage gaps	Augment storage infrastructure	 Construct new ESRs Convert sumps to smart reservoirs with IoT monitoring Implement rooftop storage incentives for industries 	Achieve 24x7 supply in pilot zones

Operation and Maintenance

Operation and Maintenance

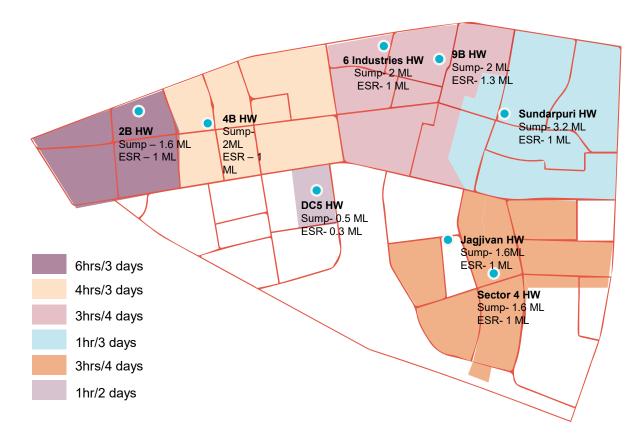
High NRW. Reduction of Transmission losses is required

Gandhidham System input	Authorised Consumption	Billed authorised Consumption	Billed metered consumption NA	Revenue water
volume		36 MLD	Billed unmetered consumption	36 MLD
		70%	36 MLD (70%)	70%
	36.9 MLD	Unbilled authorised Consumption	Unbilled metered consumption	Non - revenue
	70 %		NA	water
		0.9 MLD	Unbilled unmetered consumption	
		1.73%	0.9MLD (1.73%)	
52 MLD	Water losses	Apparent losses	Unauthorised consumption	
			0%	
		0%	Metering Inaccuracies	15.1 MLD
	15.1 MLD		NA	30%
	30%	Real losses	Leakage on Transmission and/or distribution mains	
		15.1 MLD (30%)	15.1 MLD (30%)	

Pipeline stretches are repaired on a reactive basis as and when complaints are registered

No spatial record of upgradations made

Distribution Network Operation

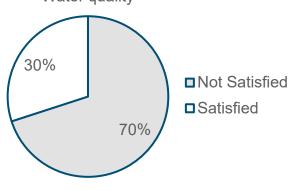

Recommendations to Strengthen Operation and Maintenance

Bottleneck	Solution	Implementation Steps	Expected Outcome
High NRW	Establish NRW Reduction Cell	 Deploy leak detection teams with acoustic sensors Implement DMA-based water audits quarterly Penalize illegal connections 	Reduce NRW
WTP failures	Modernize Rambagh WTP	 Replace intake meters with ultrasonic sensors Enforce contractor SLAs 	Ensure 100% WTP functionality
Poor maintenance	Predictive maintenance system	 GIS-based asset registry for pipes/valves Train staff in SCADA monitoring Annual O&M budget increase 	Reduce repair time from 5 days to 24 hrs

Consumer Satisfaction

Based on FGDs with 30 slum households

Inequitable Service Delivery

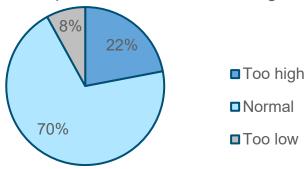


Area Type	Supply Frequency	Duration
CBD	3 days/week	6 hrs
Suburbs	2 days/week	2 hrs
Slums	1 day/week	1 hr

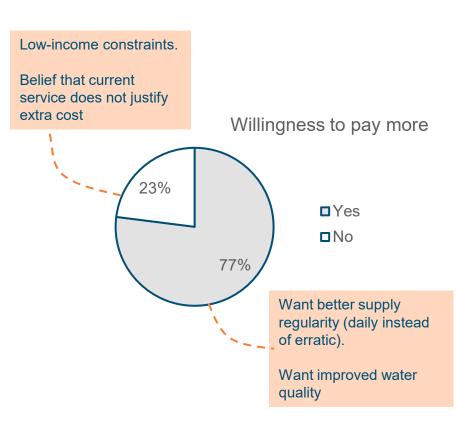
- Women spend 3.5 hrs/day collecting water
- 68% households invest in storage tanks
- 42% children miss school during water crises

High Dissatisfaction with Water Supply Frequency

Frequency of Water Supply 3% _5.00% 15% ________ • More than once a day • Once a day • Once in two days • Once in three days • Once in four days • Once in four days • Others Water quality


- Inconvenience in daily water usage.
- Dependence on costly alternatives (tankers, private wells).
- Distrust in the municipal water system.

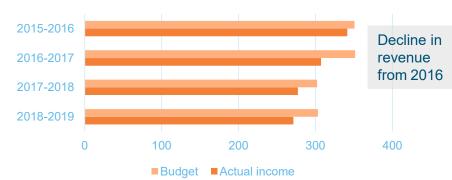
Unreliable supply is the top frustration, forcing households to seek unreliable or expensive alternatives.


Willingness to Pay More – But Only if Services Improve

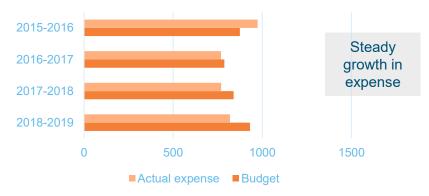
Perception of Current ULB charges

Currently a flat tariff of 900rs per household.

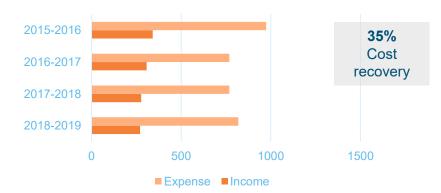
Revenue potential exists, but consumers expect service upgrades first.


Recommendations for Consumer Satisfaction

Bottleneck	Solution	Implementable Steps	Expected Outcome
Irregular Water Supply	Improve supply predictability	 Implement fixed supply schedules with public announcements. Deploy water tankers to critical shortage areas. 	Reduced daily inconvenience; increased trust in supply reliability.
Poor Water Quality	Enhance water safety & transparency	 Distribute free chlorine tablets in high-risk zones. Conduct monthly water quality tests and publish results. 	Fewer health risks; higher consumer confidence in water safety.
Lack of Consumer Feedback	Strengthen grievance redressal	 Launch a mobile app for complaints with tracking. Assign nodal officers per ward for follow-ups. 	Faster issue resolution; improved accountability.
Aging Infrastructure	Reduce leakage & improve distribution	 Prioritize pipe repairs in high-loss areas. Install smart meters in pilot zones. 	More efficient water use; equitable supply distribution.


Financial Health

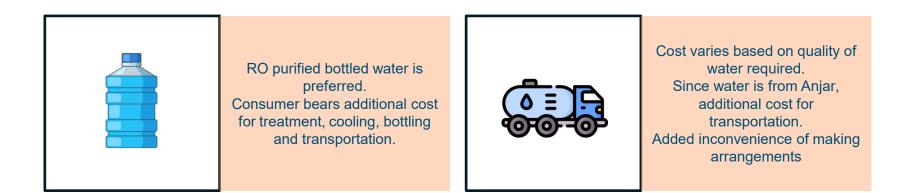
Cost Recovery


Water supply income (in lakhs)

Water supply expense (in lakhs)

Cost recovery (in lakhs)

35% Cost recovery

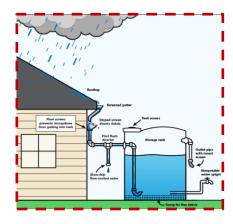

Consumer borne costs

Household storage capacity of 5-7 days Slum households also need to invest in additional storage Added maintenance costs at a household level

RO purified water at a household level is expensive and inconvenient

Recommendations for Financial Health

Bottleneck	Solution	Implementable Steps	Expected Outcome
Low Bill Collection Rates	Improve billing efficiency & compliance	 Implement automated meter reading (AMR) in high-revenue zones. Introduce online payment portals with discounts for timely payments. 	Increased collection rates; reduced revenue leakage.
High Non-Revenue Water (NRW)	Reduce water losses & unauthorized use	 Conduct water audits to identify leakage points. Install bulk flow meters to track distribution losses. 	Improved water accountability; cost savings from reduced losses.
Outdated Tariff Structure	Rationalize pricing to reflect costs	 Revise tariffs based on consumption slabs (subsidized for low-income groups). Pilot a pay-per-use model in select areas. 	Fairer pricing; improved cost recovery.
Poor Payment Compliance	Strengthen enforcement & incentives	 Penalize defaulters with late fees; reward prompt payers with rebates. Publicize compliance campaigns via local media. 	Higher payment discipline; increased revenue.


Institutional Capacity

Multiple Agencies with clearly defined Responsibilities

No clear RWH enforcer

Weak Policy Enforcement

Rainwater Harvesting (RWH) Mandate

GDA mandates RWH for buildings >80 sq.m

- No penalties for non-compliance.
- No verification during building approvals.
- No nodal agency to guide citizens on RWH installation.

Aquifer depletion & Revenue loss

Groundwater Regulation

No regulation on private

tankers

No regulation on borewell extraction

Source : Field visits,GMC, Moving towards water secure and climate resilient cities: Gandhidham, CWAS, Assessment of water situation across the water service chain in Kachchh region- A Case study of Aniar and Gandhidham City

30%

<

Recommendations to Strengthen Institutional Capacity

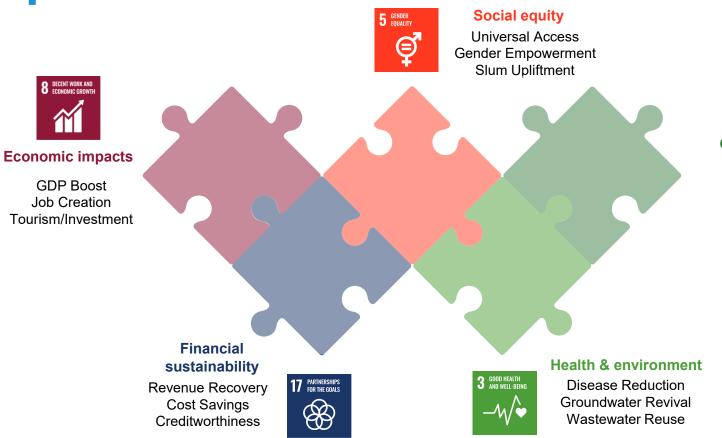
Bottleneck	Solution	Expected Outcome
Fragmented Governance	Create a "Gandhidham Water Authority" to consolidate GWIL, GWSSB, and GMC functions.	Unified decision-making.
Weak Enforcement	Establish an RWH Enforcement Cell under GMC with penalty powers (e.g., property tax liens).	Boost compliance to >70%.
Poor Complaint Systems	Deploy a digital grievance portal (integrated with Gujarat's E-Nagar platform).	Resolve complaints in <72 hours.
Revenue Leakage	Install smart meters (prioritize commercial users) and adopt Al-based theft detection .	Reduce NRW to 15%.
Staff Shortages	Hire 10+ technical staff and train them in DMA zoning and SCADA systems .	Faster leak repairs.

Gandhidham Recommendations

Overall Recommendations

Priority	Intervention	Key Actions	Expected Impact
	Leak Detection & Repair	- Manual leak surveys using acoustic sticks - Priority repair of major leaks	8-12% NRW reduction
Immediate (0-6 months)	Illegal Connection Audit	- Monthly physical verification of 10% connections - Penalty enforcement	10-15% revenue increase
	Emergency Storage Repairs	- Clean and repair 2-3 critical reservoirs - Mobile water tanks for deficit areas	15% supply stabilization
	Critical Pipe Replacement	- Replace 5% worst pipes (asbestos/rusted) - Use HDPE in high-loss zones	20-25% leakage reduction
Short-Term (6-18	Smart Meter Pilot	- Install 500 smart meters for commercial users - Staff training	Improved billing accuracy
months)	WTP Basic Upgrades	- Replace critical pumps/filters - Basic automation for dosing	10-15% efficiency gain
	Rainwater Harvesting	- Mandate for govt buildings - 50% subsidy for first 100 private adopters	5-8% groundwater relief
Long-Term (18-36 months)	New Water Source	- Negotiate additional Narmada allocation - Small desalination pilot (if coastal)	20% supply boost
	Smart Monitoring	- IoT sensors for 50% distribution network - Central dashboard	30% operational efficiency
	Wastewater Reuse	- 10 MLD treatment plant for non-potable use	15% freshwater savings

Costing


Short term interventions	Realistic Cost Estimate	Phasing	Impact
Leak Detection	₹15-25 lakh	Months 1-3	8-12% NRW reduction
Illegal Connection Audit	₹5-10 lakh	Continuous	10-15% revenue boost
Storage Repairs	₹25-40 lakh	Months 2-5	15% supply buffer

Long term interventions	Realistic Cost Estimate	Phasing	Impact
New Water Source Development	₹15-25 crore	Years 2-3	20% supply increase
Smart Water Monitoring	₹5-8 crore	Phased rollout	30% efficiency gain
Wastewater Reuse Plant	₹10-15 crore	Years 2-3	15% demand reduction

Mid term interventions	Realistic Cost Estimate	Phasing	Impact
Critical Pipe Replacement	₹3-5 crore	Phased by zone	20-25% leakage reduction
Smart Meter Pilot (500 connections)	₹50-75 lakh	Months 7-12	Better billing accuracy
WTP Basic Upgrades	₹1-1.5 crore	Months 8-14	10-15% efficiency gain

Climate resilient

Drought-Proofing Flood Mitigation

